3D Bioplotter Research Papers

Displaying all papers by Y. Liu (10 results)

Osteosarcoma progression in biomimetic matrix with different stiffness: Insights from a three-dimensional printed gelatin methacrylamide hydrogel

International Journal of Biological Macromolecules 2023 Volume 252, Article 126391

Recent studies on osteosarcoma and matrix stiffness are still mostly performed in a 2D setting, which is distinct from in vivo conditions. Therefore, the results from the 2D models may not reflect the real effect of matrix stiffness on cell phenotype. Here, we employed a 3D bioprinted osteosarcoma model, to study the effect of matrix stiffness on osteosarcoma cells. Through density adjustment of GelMA, we constructed three osteosarcoma models with distinct matrix stiffnesses of 50, 80, and 130 kPa. In this study, we found that osteosarcoma cells proliferated faster, migrated more actively, had a more stretched morphology, and a lower…

4D printing of multiple shape memory polymer and nanocomposites with biocompatible, programmable and selectively actuated properties

Additive Manufacturing 2022 Volume 53, Article 102689

4D printing of shape memory polymers (SMPs) endows the 3D printed structures with tunable shape-changing behavior and functionalities that opens up new avenues towards intelligent devices. Multiple-SMPs, specially, could memorize more than two shapes that have greatly extended the performance of 4D printed structures. However, the actuation to trigger the shape change of 4D printed multiple-SMPs is usually by direct heating to different temperatures. It hasn’t brought the full superiority of the programmability of multiple-SMPs with distinct responsive regions that could be sequentially and selectively actuated by various stimuli. Besides, the functionality of multi-material based additive manufacturing is another area…

Double-Side-Coated Grid-Type Mechanical Membrane Biosensor Based on AuNPs Self-assembly and 3D Printing

Advanced Materials Interfaces 2022 Volume 9, Issue 3, Article 2101461

The membrane based on receptor functionalization provides a new paradigm for the development of mechanical biosensors. However, improvement of sensitivity and test accuracy is still a challenge for mechanical biosensors in practical application. Herein, a surface stress mechanical biosensor (MBioS) based on double-side-gold nanoparticale (AuNP)-coated grid-type polydimethylsiloxane (PDMS) membrane (D-G-MBioS) and 3D printing for human serum albumin (HSA) detection is developed. The surface stress is amplified by the grid coupling sandwich immune structure to improve the sensitivity of the MbioS, successfully reducing limite of detection (LOD) by two orders of magnitude. By self-assembly of AuNPs, the double-side-coated PDMS membrane is…

Programmable 4D Printing of Photoactive Shape Memory Composite Structures

ACS Applied Materials & Interfaces 2022 Volume 14, Issue 37, Pages 42568-42577

4D printing is an advanced manufacturing technology combining additive manufacturing with smart materials. Based on light-active shape memory composites, smart medical structures with remote control capability, therapeutic function, and biocompatibility are hopefully fabricated by 4D printing. Here, a multifunctional composite with good mechanical properties, biocompatibility, and light-active shape memory performance is prepared by incorporating gold nanoparticles into a shape memory polyurethane matrix. The composites demonstrate a rapid and stable light-thermal effect, which can achieve localized and controlled breast tumor ablation, providing an approach to hyperthermia treatment for cancer cells. By directly bioprinting the composite melt, a series of 4D-printed structures…

4D printed orbital stent for the treatment of enophthalmic invagination

Biomaterials 2022 Volume 291, Article 121886

Currently, the implants used for enophthalmic invagination have the disadvantages of precise filling difficulty, weak filling ability, large surgical wounds, and lack of CT development. Here, a CT-developable orbital stent was manufactured via 4D printing of a shape memory polyurethane composite for enophthalmos treatment. The composite was endowed with good CT development properties via incorporation of gold nanoparticles and nano-hydroxyapatite. Based on the bionic idea and CT reconstruction technique, a 4D printed orbital stent with a bionic honeycomb pore structure and an outer contour matching the orbital coloboma was designed to support the orbital tissue more accurately and stably. CT…

Multi-compartment Organ-on-a-Chip Based on Electrospun Nanofiber Membrane as In Vitro Jaundice Disease Model

Advanced Fiber Materials 2021 Volume 3, Pages 383–393

Organ-on-a-chip (OOC) is now becoming a potential alternative to the classical preclinical animal models, which reconstitutes in vitro the basic function of specific human tissues/organs and dynamically simulates physiological or pathological activities in tissue and organ level. Despite of the much progress achieved so far, there is still an urgent need to explore new biomaterials to construct a reliable and efficient tissue–tissue interface and a general fabrication strategy to expand from single-organ OOC to multi-organ OOC in an easy manner. In this paper, we propose a novel strategy to prepare double-compartment organ-on-a-chip (DC-OOC) using electrospun poly(l-lactic acid)/collagen I (PLLA/Col I)…

Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing

Composites Part A: Applied Science and Manufacturing 2020 Volume 135, Article 105903

Using 3D printing to manufacture shape memory polymers (SMPs) becomes popular, since the technique endows SMPs the ability to shape into desired structures according to their applications. Among various types of SMPs, epoxy-based shape memory polymer and their composites are known for their high modulus and strength. However, limited by their rheological behavior, it is still hard to prepare high-quality printable epoxy materials. Here, by carefully tuning of rheological properties, we can prepare printable ink showing good shape retention, excellent mechanical performances below and above the glass transition temperature of epoxy, as well as good shape memory effect. The prepared…

The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique

Journal of Biomedical Materials Research Part A 2021 Volume 109, Issue 7, Pages 1209-1219

Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell-loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano-hydroxyapatite (na-HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na-HA bioscaffolds were printed using 3D…

Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair

International Journal of Biological Macromolecules 2020 Volume 148, Pages 153-162

With the increasing applications of 3D printing technology in biomedical field, the composition or additives of the related materials has become critical for the next development. In the current study, we have prepared 3D printed polycaprolactone-hydroxyapatite (PCL-HA) porous scaffolds with loaded heparan sulfate (HS), in order to reveal the reparative effect of different concentrations of HS on the healing of bone defects. As a result, the scaffold itself showed sound compression resistance, air porosity and good biocompatibility. From both in vitro and in vivo experiments, the scaffold with low concentration of HS led to positive effects in promoting osteoblast maturation…

3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance

Biomaterials 2019 Volume 222, Article 119423

Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on…